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Abstract 

It was demonstrated in earlier work that the vector representation of electromagnetic 
theory can be factorized into a pair of two-component spinor field equations (Sachs & 
Schwebel, 1962). The latter is a generalization of the usual formalism, in the sense that 
in addition to predicting all of the effects that are implied by the vector theory, it predicts 
additional observable effects that are out of the domain of prediction of the Maxwell 
formalism. The latter extra predictions were derived in previous publications (Sachs & 
Schwebel, 1961, 1963; Sachs, 1968a, b). In this paper, the spinor formalism is applied 
to effects that are expected to agree with the predictions of the standard formalism--the 
Coulomb force between point charges and the measured speed of a charged particle 
which moves in an electric potential. While there are no vector or tensor variables in- 
volved in this formalism, the results are found, as expected, to be in agreement with the 
conventional representation of electromagnetic theory. The analysis serves the role of 
demonstrating that in the appropriate limiting case, the factorized spinor formulation 
of electromagnetism does predict the explicit classical effects that are also predicted by 
Maxwell's field equations. The paper also presents a derivation of the general form of the 
solutions of the spinor field equations. 

1. Introduction 

Electromagnetic field theory led to the first discovered set o f  laws that  
were consistent with the theory o f  special (and general) relativity. Indeed, 
the fo rm of  Maxwell 's  equations provided a seminal influence for  Einstein's 
theoretical development o f  the relativity concept,  f rom the point  o f  view 
o f  its philosophical content  as well as its mathematical  structure. 

The essential starting point  for  Einstein's theory is the principle o f  
relat ivi ty-- the assertion that  the laws of  nature that  describe any sort o f  
physical phenomena  must  have the same form in any frame o f  reference 
that  is distinguishable f rom any other  in terms o f  their relative motion.  
Since the description o f  mot ion  entails a min imum o f  four  pa ramete r s - -  
which we may  associate with the space-time coordinates (or sometimes 
with the energy-momentum coordinates,  e.g. in scattering probtems)- - the  
principle o f  relativity is the assertion o f  a symmetry principle in a four-  
dimensional space-time. The symmetry  group that  underlies this theory 
is then represented by that  set o f  t ransformations between the space-time 
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coordinates of one observer and any other observer who is moving relative 
to the first, such that the forms of the laws of nature that they deduce in 
their respective frames of reference are the same. 

When the relative motion is of an arbitrary type (i.e. general relativity) 
the irreducible representations of this group are in terms of the sixteen 
parameters {Ox~'/ax v} which are, in turn, a function of the space-time 
points where they are evaluated. In this general case, then, the space-time 
coordinate system is non-linear. The underlying group for this symmetry 
principle (which will be referred to as the 'Einstein group') is then a sixteen- 
parameter Lie group. It is a 'Lie group' because of further physical assump- 
tions that require that the transformations be analytic as well as continuous. 
In the special case where the relative motion corresponds to constant 
rectilinear speed (i.e., special relativity) the Einstein group reduces to the 
ten-parameter group called the Poincar~ group. In the latter limit the 
space-time is linear and the constant parameters {Ox~'/ax ~} are the three 
Eulerian angles--describing the space ~-~ space transformations, the three 
components of constant speed, vi/c, describing the space ~-~ time trans- 
formations and the four translations in space and time. In this paper, 
reference will only be made to the case of special relativity , although the 
results do carry over to the general case. 

When one considers that the Maxwell field equations are a special 
representation of the Poincar6 group, then the following question naturally 
arises: Is this the most primitive representation of the group ? In answer 
to this question, it has been shown in an earlier publication (Sachs & 
Schwebel, 1962) that indeed, when one takes into account the fact that 
the principle of relativity entails only relative motion--implying that the 
underlying group is a continuous parameter group--the usual vector 
representation of the Maxwell theory factorizes into a pair of uncoupled 
first-rank spinor equations. The extension of this result to the case of 
general relativity was then carried out (Sachs, 1964). 

The description of electromagnetic phenomena in terms of a spinor 
language has a substantial literature.'~ However, these earlier works did 
not generalize the Maxwell formalism. They rather re-expressed one four- 
dimensional representation (the usual vector-tensor form) in terms of 
another four-dimensional representation--one that entails a second-rank 
spinor field. Of course, this is always possible since the second-rank spinor 
is an entity that is in one-to-one correspondence with the four-vector. The 
latter was a reformulation that can serve quite usefully in solving problems 
in electromagnetic theory. 

On the other hand, the factorization of the Maxwell formalism into a 
pair of first-rank spinor field equations leads to a generalization in the 
sense that the new formalism makes more predictions of physical observables 

t See, for example, Laporte, O. and Uhlenbeck, G. E. (1931). Physical Review, 37, 
1380; Oppenheimer, J. R. (1931). Physical Review, 38, 725; Moliere, G. (1949). Annalen 
der Physik, 6, 146; Ohmura, T. (1956). Progress of Theoretical Physics (Kyoto), 16, 684; 
and Moses, H. E. (1959). Physical Review, 113, 1670. 
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than does the vector formalism. Some of these predictions are in one-to-one 
correspondence with all of the physical predictions of the vector repre- 
sentation of the theory. But the remaining predictions of the spinor theory 
have no counterpart in the vector theory. This is analogous to a consequence 
of Dirac's factorization of the Klein-Gordon equation, leading, for example, 
to the energy coupling term ~.H, which has no counterpart in the scalar 
formalism. 

Most of this author's applications of the factorized spinor form of the 
electromagnetic equations have been made in the description of micro- 
scopic physics. This Js because it is only in this domain where the additional 
predictions that have no counterpart in the Maxwell theory show up. 
These applications have had to do with the fine structure of hydrogen 
(Sachs & Schwebel, 1961), pair annihilation and creation (Sachs, 1968a), 
electron-proton scattering (Sachs & Sehwebel, 1963) and electron-alpha 
scattering (Sachs, 1968b). The reason that these additional predictions do 
not play any role in problems concerned with macroscopic physics, or in 
the energy region where the Schrrdinger wave equation is a valid representa- 
tion of quantum mechanics, is that they have to do with interaction terms 
that mix the spinor components of the Dirac field. In the low-energy 
limit, the multi-component Dirac field reduces to the single-component 
Schr~dinger field so that the effect of mixing spinor components auto- 
matically vanishes. 

Even though the factorized spinor representation of electromagnetic 
theory has been shown, generally, to make the same predictions as the 
usual representation of Maxwell theory, because of the one-to-one cor- 
respondence between all of the conservation laws of the vector theory and 
some of those of the spinor theory, it still may seem peculiar and hard to 
understand this generalized representation of electromagnetic theory to 
one who is used to thinking about electromagnetic phenomena in terms 
of matching the vector and tensor field variables with forces, since there are 
no vector or tensor field variables here at all. Thus, to facilitate further an 
understanding of the physical meaning of the spinor field variables in 
electromagnetic theory, as well as demonstrating the mathematical solutions 
of the spinor field equations, the theory wilt be applied in this paper to 
explicit problems in the macroscopic domain--where one should expect 
identical predictions with those of the conventional vector representation 
of the theory. The primary purpose in this paper is then to determine the 
general form of the spinor field solutions and then to apply these to the 
derivation of two classical electromagnetic effects: (I) the Coulomb force 
that is exerted by one point charge on another, and (2) the measured velocity 
of a charged particle. 

2. The Factorized Spinor Equations and their Solutions 

To demonstrate the factorization of the Maxwell field equations into 
a pair of first-rank spinor equations, an initial identification can be made 
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between the real variables E, H of the vector representation, and the complex 
components of the variables of the spinor representation. Thus, consider 
the complex vector Ge, whose space and time components are 

Gk = (U + iE)k,, Go = 0  (k=  1,2,3) (2.1) 

and let the structuring of the two-component spinor variables be guided 
by the following correspondence between the components of a quaternion 
and those of a four-vector 

Xo + X3 x l  - ix2 ~-  (2.2) 
X 1 § ix  2 Xo X3 ] X2 

X3 

With this correspondence, an initial guess at the identification between 
the components of the electromagnetic spinor field solutions and sources 
and those of the Maxwell formalism is the following 

{ 63 ~, Y1 =-&ri(  �9 p§ 
q~l = ~G 1 + iG2] \J1 § iJ2] 

(2.3) 

~02 \ -G3 ] --J3 ] 
It is readily verified with the quaternion differential operator defined as 
follows 

[ 90_ a3 - ( 9 , -  i02)  
crt~O~=aoO~ \_(Ol § ) 00§ ] (2.4a) 

where 

and 

e l = ( ~  ~), cr2=(O ; i ) ,  cr3=(~ ?1) (2.4b) 

are the Pauli matrices, that the two, two-component spinor equations 

% 9" cp~ = Y= (~ = 1, 2) (2.5) 

(corresponding to four complex or eight real equations) are in one-to-one 
correspondence with the eight real equations of the Maxwell theory 

0 ~  V x H -  0~ = 47rj 
~7.H = 0 V. E = 4rrp (2.6) 

( c  = 1) 

It is important to note at this stage that the relation (2.3) between the 
solutions of the spinor equations (2.5) and the Maxwell field equations 
(2.6) is strictly an identification in a given Lorentz frame. Under the space- 
time transformations of special relativity (the Poinear6 group) the trans- 
formed variables ~,'(x'), Y','(x') cannot be form-invariant with respect 
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to the field variables E, H. This is because 9~, Y~ are the basis functions 
of the two-dimensional representations of the Poincar6 group, while E, H 
belong to the four-dimensional representations of this group. This lack 
of equivalence is obvious from the fact that the spinor transformations S 
are two-dimensional matrices that wouldmix the components G~ in the 
initial identification in equation (2.3) (Sachs & Schwebel, 1962). 

Nevertheless, the physical requirement of the theory demands that a 
form-invariant correspondence must persist in the invariants and con- 
servation equations of the respective formulations. This, of course, is 
because it is the conservation equations, and not the field equations them- 
selves, that relate directly to the measured values of the properties of charged 
matter--and the predictions of the vector form of the theory certainly have 
empirical validity. Such a correspondence between some of the invariants 
and conservation equations of the factorized spinor form of electro- 
magnetism, and all of those of Maxwell theory, was demonstrated in the 
earlier publications (Sachs & Schwebel, 1962; Sachs, 1964). 

Once this correspondence is established in any frame of reference, the 
procedure is to consider the spinor field equations (2.5) to represent electro- 
magnetism--without at all using the variables of the vector representation 
of the theory. That is to say, all electromagnetic phenomena should now 
be predictable from the solutions, 9z(x), qo2(x) of these field equations. 

2.1. Conservation Equations 

Multiplying equation (2.5) on the left with hermitian conjugate of ~ ,  
we have 

Taking the hermitian adjoint of this equation and interchanging the labels 
(~,/3), we have 

Adding these two equations, we obtain the following four (complex) 
conservation equations 

O"(~o~* % qo~) = (cp/3* Y~ + Y/3* ~ )  (2.1.1) 

These correspond to eight real conservation equations, as contrasted 
with the four real conservation equations 

O~ T j  ~ = k~ (2.1.2) 

of the vector-tensor formalism. Here T~ ~ is the electromagnetic energy- 
momentum tensor and k~ is the four-Lorentz force density 

k~ = {k; k0} = {pE + j x H; - j .  E} (2.1.3) 

To exhibit the correspondence between some of the conservation equa- 
tions (2.1.1) and the standard ones (2.1.2), consider the sum of equation 
(2.1.1) with ~ =/3 = 1 and equation (2.1.1) with ~ =/~ = 2. It is readily 
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verified, by direct substitution of the identification (2.3) with the standard 
variables, that this sum does indeed correspond with the standard energy 
conservation equation that relates to Poynting's equation, i.e., 

1 1 
16zr 0u(91r %'9t + ~~ ~ ~~ = - 16~" (91* Y~ + ~~ tY2 + h.c.) 

(2.1.4) 
1 1 V. (E • H) = - E . j  "~ ~ 0~ E2 + H 2) + 

Similarly, three other real equations [equation (3.1)] correspond to the 
momentum conservation equations of electromagnetic theory. But there 
are four more conservation equations with no counterpart in the vector- 
tensor formalism. These will not be discussed in this paper. Some of them 
relate to new predictions that were derived in earlier publications (Sachs 
& Schwebel, 1961, 1963; Sachs, 1968a, b). 

It should be emphasized at this point that a generalization which occurs 
here lies in the feature that the right-hand side of equation (2.1.1)--the 
terms that play the role in spinor theory of the Lorentz force density--are 
separately relativistically invariant. This follows from the covariance 
properties of equation (2.5). It was shown earlier (Sachs & Schwebel, 1962) 
that if the transformations of the Poincar6 group induce the change in 
the spinor variables 

~(x)  -~ ~ ' (x ' )=  S~(x)  (2.1.5a) 

then equation (2.5) will be relativistically covariant if and only if the source 
fields transform as follows 

Y~(x) -+ Y~'(x') = (S*) -~ Y~(x) (2.1.5b) 

where S solves the equation 

s t  % s = (Ox. ' /ax . )  ~.  (2.1.50 
Thus, any of the combinations on the right-hand side of equation (2.!.1) 
transform as a scalar 

9~* Y'~ -+ epJ' Y~' = 9~* St(SO-1Y~ = 9,* Yg (2.1.6) 

This result is in contrast with the conventional formalism which yields a 
law of energy-momentum conservation--a single entity with four com- 
ponents that cannot be uncoupled when comparing the observations of 
electromagnetic phenomena in different inertial frames. 

2.2 Solutions of the Spinor FieM Equations (2.5) 

For the problems under consideration in this article, it will be necessary 
to determine the particular solutions of the spinor field equations (2.5). 
This will be done by using the method of Fourier transforms. Substituting 
the Fourier integral 

9~(x) = f 9~(k) exp(ik ~ xv) d 4 k (2.2.1) 
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into the field equations (2.5), we have 

0 ~ f q~(k) exp(iU' x~) d 4 k = f ( i ~  U') q~(k) exp(ik ~' x~) d 4 k = ]/'~ O'/~ 

Multiplying both sides of this equation by the conjugate quaternion 

( - ik  p O p) exp(-ik ~' xu) 

where ~p = { % ; -  a) are the conjugate quaternion basis elements, and 
integrating over space-time, we have 

f K(k', k) q~(k) exp[i(k t~ - k w) d 4 x d 4 k 

= - i  f k p 6p Y~,(x) exp(-ik w x~) d 4 x (2.2.2) 

where 

K(k, k') = (k;' ~p) (k" %) = kP' kp - % crj(k ~ k J - k J' k ~ - 

- ,~: ,~, , ,(k J' k "  - k " '  k O  

and 
kP' kp = k~ k ~ - k ' . k  

Using the integral representation of the Dirac delta function 

f exp[i(kW - k ~) d 4 x = (27r) a 3(k ~' - k ~) Xt~] 

in the left side of equation (2.2.2) and the property that K(k,k) = kVk~, we 
have the Fourier coefficient 

- i  
qo~(k) = (-~)4 f ~Y~(x')exp(-ild'Xk kv t~') d4x' (2.2.3) 

Substituting equation (2.2.3) into equation (2.2.1), the particular solutions 
of the spinor field equations (2.5) then take the form 

~=(x)  = f {[(~~ exp[ik"(x~- x~')]]d4k} T~(x')d4x ' (2.2.4) 

Note that the quaternion function in the square bracket, integrated over 
k-space, is the Green's function for the field equations (2.5). 

2.3. Spinor Field Solutions for a Static Point Charge 

Starting with the structure of the source field variables Y~ that correspond 
to a static point charge (in any frame of reference~') at the origin, we have, 
according to the identification in equation (2.3), 

Y,=-4rr ie3(r ) (~) ,  Y'2 = -47rie~(r) (~) (2.3.1) 

t Note that the assumption of a fixed origin in this application is based on the non- 
relativistic approximation which assumes that the point charge at the origin absorbs a 
negligible amount of energy and momentum from its environment, so that it can be 
considered at rest for all times, if it is initially in this state. 

11 



1 5 2  MENDEL SACHS 

We must now determine the solution cp~ of  equation (2.5) that corresponds 
to the source Y'~. Substituting the latter from equation (2.3.1) into equation 
(2.2.4) and successively integrating over dxo', dr' and dk ~ it is found that 

e . k . a  1 
~o,(x)=~-~2 f exp(tk.r)-~-(o)dk (2.3.2) 

where k 2 = (kl) 2 + (k2) 2 + (k3) 2 a n d d k  = dkldk2dk 3. 
Substituting the Pauli matrices (2.4b) into equation (2.3.2), the solution 

~01 can be expressed as follows 

f kl + ik2exp(ik.r)dk + (lo) k 3 e k 2 f~exp(ik.r)dk} 
(2.3.3) 

Integrating by parts, it is readily verified that 

f xj 4rr 73 exp(-ik,  r) dr = (-ik J) ky 

It then follows from the Fourier transform of this equation that 

xj=(-i  f k, r3 k2rrZ] ~ e x p ( i k . r ) d k  (2.3.4) 

Substituting equation (2.3.4) into equation (2.3.3), we obtain the following 

_i  e 
q)l= r3(x1X+3ix2) (2.3.5a) 

Using the same procedure with the second spinor source field YE [equation 
(2.3.1)], rather that YI, the corresponding spinor solution ~o2 of equation 
(2.5) is found to have the following form: 

ie (x 1 --ix2t (2.3.5b) 
~9 2 = - ~  \ - - X  3 ,] 

3. Derivation of Coulomb's Law 
The spinor variables in equations (2.3.5a) and (2.3.5b) are the electric 

field intensity solutions for a static point charge, according to the spinor 
formulation (2.5) of electromagnetism. These are to be compared with the 
solutions 

Ej = exj/r 3, Hj = 0 (j  = 1, 2, 3) 

of the conventional formalism. 
To deduce the mutual forces between point charges, we must now consider 

the spinor conservation equations (2.1.1). We have seen that one of  these 
can be expressed in the form shown in equation (2.1.4) in which the 
scalar on the right-hand side plays the role of  the time-component of  the 
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four-Lorentz force density. Three other conservation equations that depend 
on the space-components of the Lorentz force density are 

akSc~(j,k) = Y ( j )  (k , j=  1,2,3) (3.1) 
where 

1 , 
2W(l, k) = ( -  1-~) @10"k ~02 -~ ~2~f O'k ~Ol) 

[ \ i  
5o(2, k )=  [l~rr)(~oz* e~ q)l--qvl 'r o'k ~o2) (3.2) 

S~(3'k) = - 1 - ~  (~~ - ~~ crkq~ 

and (1) 
~-(1) = - ] - ~  [(qo2* Y1 "4- ~01' ]/'2) "~- h.c.] 

~-(2)  = / ~  [(~o2' r ,  - 9,* r2) + h.c.] (3.3) 

o~(3) = ( - 1 ~ ) [ ( ~ 2 '  Y2-  qh* Y1)+ h.c.] 

(h.e. = hermitian conjugate). 
Let us consider the first of these force terms, •(1), for the problem at 

hand. Here, 

( 1 ) (q~(2m)* Y~'O + (p~m)~ Y(f)) + h.c. (3.4) ,~(1) = - ~  

where (m) refers to the point charge that exerts the electric field 90d ") and 
(n) refers to the body that is acted upon. Taking the latter to be a point 
charge of quantity q, located at r = a, the source field solutions take the 
form 

Y~) = -4~iq,(r - a) (~), Y(f) = -47riq'(r - a) (01) (3.5) 

The field intensity 5o~ '~) for a point charge e at the origin is given in equations 
(2.3.5a) and (2.3.5b). Thus, inserting equations (2.3.5a), (2.3.5b) and (3.5) 
into equation (3.4), the force density ~(1)  takes the form 

qe 
~ ( 1 ) =  ~ {(xl+ ix2--X3)(~) + (X3 Xi-- iX2)(~))~(r-- a) 

(3.6) 
~(r  - a )  qe 

It then follows that the integrated force that a charge e, at the origin, exerts 
on a charge q, at a, is 

F(l)= f .Y(1)dr=qe f ~ ( r -  a)dr=qeaa/a 3 (3:7) 

11" 
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In a similar fashion, it is found that the force densities ~'(2) and ~(3) 
in equation (3.3) give the integrated force terms 

F(2) = qe(a2/a3), F(3) = qe(a3/a 3) (3.8) 

Thus we see that the three scalars, F(j), which are derived from the con- 
servation laws (2.1.1) of  the factorized spinor equations (2.5) of  electro- 
magnetic theory, correspond exactly with the three vector components F~ 
that represent the Coulomb force that is exerted by a charge e at the 
origin on another charge q which is separated from it by a distance 
a = (al  2 -}- a22 + a32) 1/2. 

Of course, the relative orientation of  the line of  centers between these 
charged bodies is relative to an arbitrary choice of the orientation of  the 
coordinate frame. With any choice of orientation, one must measure a 
maximum of  three numbers to completely specify the resultant force. The 
three numbers are identified in the conventional description with the three 
components of a vector--because, experimentally, the sum of their squares 
is equal to the square of  the resultant force (which one may determine with 
one measurement by specifying a coordinate frame with one of  its axes 
along the line of  centers of  the interacting charges). Nevertheless, these 
three numbers, that one identifies with the measurements, is associated 
here with three scalars. It just turns out in this case, with the approximations 
that have been made, that each of  these sets of three numbers are in one-to- 
one correspondence. Still, the mathematical formalisms that led to identical 
predictions in this application, are quite different. 

The first difference that should be noted is the way in which the 'test 
charge' appears in the two formulations. In the conventional description, 
the test charge is introduced by multiplying the scalar charge density 
q~(r - a) by the force field E. In the spinor formulation, the test charge is 
introduced not as a scalar, but rather as a spinor variable Y:,. Indeed, it is 
only when the spinor field l/'~ is combined with the spinor field solution 
cp~ in the form of an hermitian product, ~0JY'g, that the mutual force can 
be defined. It is the fact that in the vector formulation one can express the 
actual force as the product of  a field intensity E and a scalar charge q that 
leads to the illusory conclusion that one observes the field E, itself. For  
example, one claims to measure the voltage of  a battery where he actually 
measures the energy difference across the poles of  the battery (electron- 
volts) and then deduces the voltage by dividing through by the unit of 
charge. This is a trivial matter in this case, since the unit of  charge is simply 
a number. However, as we have seen in the above example, the extrapolation 
from the measured numbers to the vector form of the electric field intensity 
is not unique. 

If  one can deduce from the measured numbers two different expressions 
for the electric field intensity--the vector or the spinor forms--further  
criteria must then be used to select one of  them in the general expression 
of  the theory. The approach that has been taken is that such a criterion is 
the one of  maximum generality--for here one makes the maximum number 
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of predictions of the theory. The spinor formalism for electromagnetism 
uniquely fulfills this criterion. In the applications considered in this paper 
the predictions of the two formalisms are identical. But in other applications, 
referred to earlier (Sachs & Schwebel, 1961, 1963; Sachs, 1968a, b), the 
spinor formulation predicts effects that are not in the domain of the vector 
representation of electromagnetism. 

4. Derivation of the Measured Velocity of a Point Charge 

According to the conservation equation (2.1.4), 

(1) 
~.~(0) = - - l ~  [(~01t Y1 -}- ~02t Y2 "]- h.c.] (4.1) 

is the density of power that is dissipated during the flow of electric current. 
It is the term that corresponds to E.j in Poynting's equation. 

If E(r, t) is the deduced magnitude of the electric field intensity which is 
associated with the measured external voltage that causes the current flow, 
then the magnitude of the resulting current density is the following 

j = ~(0)/E(r, t) (4.2) 

Describing this current density in terms of the flow of q units of electric 
charge per square centimeter per second, the expression from this theory 
for the measured velocity to be associated with the current densityj is the 
following 

v = (1/q) ( jd r  = ( [~(O)/qE] dr (4.3) 
d J 

It is important to note that the charge q never appears by itself in any 
predicted value for a measured property of the system. It rather appears 
as a factor in a term which is a measure of the coupling of the external 
electric field and the charged matter that is acted upon. 

The expression (4.3) is the required prediction for the velocity of a charged 
particle, according to the spinor formalism. To obtain an explicit result, 
one must solve the spinor field equations (2.5) for any special sort of charged 
system that may be under study. One can then evaluate ~-(0) and integrate 
(4.3) to obtain the final result. 

Ifo~(0) and E should both be time-independent, then one more integration 
of equation (4.3) gives the following prediction for the measured displace- 
ment of the charged matter 

X-Xo=(f•(o)/qe(,)dr)(t-to) (4.4) 

where (x0,t0) are the position and time measure when the external field 
is first applied. 
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4.1. Application to a Constant External Electric Field 

To check this result with a simple example, suppose that the external 
field is the constant E, oriented in the x3-direction, and that the four- 
current density can be approximated by point charges that move at a 
constant speed Vo (along the x3-direction). In this case, according to 
equation (2.3), 

F1 =-47r i evo3( r ) ( ; ) ,  

Substituting these variables into equation (4.1), 

= (qE) Vo 3(r) 

Y= = 4~rievo S(r) (O1) (4.1.1) 

Thus, equation (4.3), for the speed of the charged particle, becomes 

v = (qEvo/qE) f ~(r) dr = v0 

as it should. According to equation (4.4), the displacement then takes the 
expected form 

x - Xo = Vo(t - to) 

5. Summary 

The purpose of the theoretical development in this paper has been 
analogous to a study of the classical limit of wave mechanics. It is based 
on the requirement that a mathematical limit must exist in any generalized 
theory which corresponds to the part of the earlier formalism that has been 
empirically correct in describing the data. Thus wave mechanics must 
approach the formalism of the Hamilton-Jacobi theory in mechanics, in 
the appropriate limit of macroscopic physics--in the sense that the pre- 
dictions of quantum and classical mechanics must be the same in this limit. 
Similarly, the factorized spinor formulation of electromagnetic theory 
must make the same predictions as the vector representation of the theory 
in the appropriate domain where the extra predictions of the spinor theory 
are ineffective. 

Thus, the attempt has been made in this paper to further elucidate the 
first-rank spinor formulation of electromagnetism by deriving those 
solutions that relate to physical effects which agree with the predictions of 
the standard formalism. One reason for doing this is to emphasize the 
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assertion of this theory that one need not deal with vector or tensor vari- 
ables in order to predict any of the measured electromagnetic effects--nor 
does one have to introduce electric charge in terms of a scalar; in this formu- 
lation it appears rather as a spinor. One of the main reasons for this con- 
tention is that the actual predictions of  the theory come from the conservation 
equations rather than the field equations themselves. The latter part  of  the 
formalism must provide the solutions which are the necessary input for 
the conservation equations. This is analogous to the feature of  quantum 
mechanics that the solutions of  the Schr6dinger equation are not directly 
observable, but are rather the necessary input for other mathematical forms, 
which depend on these solutions, and do relate to the actual measurements. 
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